Selection of human evaluators for design smell detection using dragonfly optimization algorithm: An empirical study
نویسندگان
چکیده
Design smell detection is considered an efficient activity that decreases maintainability expenses and improves software quality. Human context plays essential role in this domain. In paper, we propose a search-based approach to optimize the selection of human evaluators for design detection. For purpose, Dragonfly Algorithm (DA) employed identify optimal or near-optimal evaluator’s profiles. An online survey designed asks evaluate sample classes presence god class smell. The Kappa-Fleiss test has been used validate proposed approach. results show dragonfly optimization algorithm can be utilized effectively decrease efforts (time, cost ) concerning identification number profile experts required evaluation process. A Search-based improving god-class Consequently, leads minimizing maintenance cost.
منابع مشابه
metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
An optimization technique for vendor selection with quantity discounts using Genetic Algorithm
Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...
متن کاملIntelligent application for Heart disease detection using Hybrid Optimization algorithm
Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...
متن کاملReinforcement Learning for Automatic Online Algorithm Selection - an Empirical Study
In this paper a reinforcement learning methodology for automatic online algorithm selection is introduced and empirically tested. It is applicable to automatic algorithm selection methods that predict the performance of each available algorithm and then pick the best one. The experiments confirm the usefulness of the methodology: using online data results in better performance. As in many onlin...
متن کاملSELECTION OF SUITABLE RECORDS FOR NONLINEAR ANALYSIS USING GENETIC ALGORITHM (GA) AND PARTICLE SWARM OPTIMIZATION (PSO)
This paper presents a suitable and quick way to choose earthquake records in non-linear dynamic analysis using optimization methods. In addition, these earthquake records are scaled. Therefore, structural responses of three different soil-frame models were examined, the change in maximum displacement of roof was analyzed and the damage index of whole structures was measured. The soil classifica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information & Software Technology
سال: 2023
ISSN: ['0950-5849', '1873-6025']
DOI: https://doi.org/10.1016/j.infsof.2022.107120